Diffusion Directions Imaging (DDI)
نویسندگان
چکیده
Di usion magnetic resonance imaging (dMRI) is the reference in vivo modality to study the connectivity of the brain white matter. Images obtained through dMRI are indeed related to the probability density function (pdf) of displacement of water molecules subject to restricted di usion in the brain white matter. The knowledge of this di usion pdf is therefore of primary importance. Several methods have been devised to provide an estimate of it from noisy dMRI signal intensities. They include popular di usion tensor imaging (DTI) as well as higher-order methods. These approaches su er from important drawbacks. Standard DTI cannot directly cope with multiple ber orientations. Higher-order approaches can alleviate these limitations but at the cost of increased acquisition time. In this research report, we propose, in the same vein as DTI, a new parametric model of the di usion pdf with a reasonably low number of parameters, the estimation of which does not require acquisitions longer than those used in clinics for DTI. This model also accounts for multiple ber orientations. It is based on the assumption that, in a voxel, di using water molecules are divided into compartments. Each compartment is representative of a speci c ber orientation (which de nes two opposite directions). In a given compartment, we further assume that water molecules that di use along each direction are in equal proportions. We then focus on modeling the pdf of the displacements of water molecules that di use only along one of the two directions. Under this model, we derive an analytical relation between the dMRI signal intensities and the parameters of the di usion pdf. We exploit it to estimate these parameters from noisy signal intensities. We carry out a coneof-uncertainty analysis to evaluate the accuracy of the estimation of the ber orientations and we evaluate the angular resolution of our method. Finally, we show promising results on real data and propose a visualization of the di usion parameters which is very informative to the neurologist. Key-words: di usion magnetic resonance imaging, imaging biomarkers, von Mises & Fisher distribution, brain white matter modeling in ria -0 06 08 70 6, v er si on 2 17 S ep 2 01 1 Di usion Directions Imaging (DDI) Résumé : Di usion magnetic resonance imaging (dMRI) est la modalite de reference pour etudier les connectivites dans la matiere blanche du cerveau. Les images obtenues par dMRI sont en e et liees a la densite de probabilite du deplacement des molecules d eau sujettes a une di usion contrainte dans la matiere blanche. La connaissance de cette densite, appelee densite de di usion, est par consequent d une importance capitale. N etant pas mesurable, de nombreuses methodes ont ete imaginees pour l estimer a partir d images bruitees produites par dMRI. Parmi elles, on compte le populaire modele DTI ainsi que des methodes d ordres superieurs. Ces approches sou rent d importants inconvenients. Le modele DTI standard ne peut pas directement gerer plusieurs orientations de bres. Les methodes d ordres superieurs soulagent cette limitation mais au prix d une augmentation non negligeable du temps d acquisition. Dans ce rapport de recherche, nous proposons, dans la meme veine que DTI, un nouveau modele parametrique pour la densite de di usion avec un nombre raisonnablement faible de parametres dont l estimation ne requiert pas d acquisitions plus longue que celles faites pour DTI. Ce nouveau modele prend aussi en compte di erentes orientations de bres possibles. Il est base sur l hypothese que, dans un voxel, les molecules d eau sujettes a la di usion sont divisees en plusieurs compartiments. Chaque compartiment represente une orientation de bres donnee (ce qui de nit deux directions opposees). Dans un compartiment donne, nous faisons l hypothese supplementaire que les molecules d eau di usent dans chacune de ces deux directions en proportions egales. Ceci nous permet de nous concentrer sur la modelisation de la densite de deplacement des molecules d eau uniquement le long d une direction. En substance, nous la modelisons par la convolution d une Gaussienne 3D et d une densite de von Mises & Fisher 2D. La premiere est parametree de telle sorte a capturer principalement la composante radiale de la di usion pendant que la seconde capture la composante angulaire. Un melange equi-pese de deux densites de ce genre avec des directions opposees fournit notre modele mono-compartimental. Un melange de ces densites fournit le modele multi-compartimental qui permet la prise en compte de multiples orientations de bres. Sous ces hypotheses sur la forme de la densite de di usion, nous derivons ensuite une relation analytique entre l intensite du signal de di usion et les parametres de la densite de di usion. Nous l exploitons pour estimer ces parametres a partir des intensites des signaux de di usion bruites. Nous menons une analyse par cone d incertitude pour evaluer la precision de l estimation des orientations des bres et nous evaluons la resolution angulaire de notre methode pour un nombre d acquisitions et un niveau de bruit donnes. En n, nous montrons des resultats prometteurs sur donnees reelles et proposons une visualisation simple des parametres de di usion tres informative pour le neurologue. Mots-clés : di usion magnetic resonance imaging, biomarqueurs d'imagerie, distribution de von Mises & Fisher, modélisation de la matière blanche cérébrale in ria -0 06 08 70 6, v er si on 2 17 S ep 2 01 1 Di usion Directions Imaging (DDI) 3
منابع مشابه
Comparison of 3 Diffusion Models to Track the Hand Motor Fibers within the Corticospinal Tract Using Functional, Anatomical and Diffusion MRI
In this paper, we propose to compare three diffusion models to track the portion of the corticospinal tract dedicated to the hand motor function (called hand motor fibers hereafter), using diffusion, functional and anatomical MRI. The clinical diffusion data have few gradient directions and low b-values. In this context, we show that a newly introduced model, called diffusion directions imaging...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملEvaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors
Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...
متن کاملDiffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index
Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...
متن کاملWater Diffusion in q-space Imaging as a Probe of Cell Local Viscosity and Anomalous Diffusion in Grey and White Matter
Extraction of accurate quantitative parameters to characterize water diffusion in complex porous media like brain tissue in neuroimaging is a challenging inverse problem, that depends on medium's structural and geometrical factors [1,3]. If the role of membranes is generally invoked, probe collisions with the insoluble cytoskeleton network and water hydrodynamic interactions with dissolved macr...
متن کامل